

55th Indian Foundry Congress 2007

Inoculation of Cast Irons – An Overview

J.N. Harvey and G.A. Noble

J.N. Harvey Tennant Metallurgical Group Ltd, Chesterfield, United Kingdom

> G.A. Noble Tennant Metallurgical Group Ltd, Chesterfield, United Kingdom

Inoculation of Cast Irons – An Overview

J.N. Harvey and G.A. Noble

INTRODUCTION

- □ Why inoculate?
- □ How to inoculate?
- □ What inoculant?
- □ Case Studies.

INOCULATION OF DUCTILE & GREY IRON

The main purpose of inoculation is to achieve best mechanical properties and optimum machinability characteristics by:

- 1. Control of graphite structure.
- 2. Elimination or reduction of chill/carbide.
- 3. Reduction of casting section sensitivity.

Fig. 1 : Iron Carbon equilibrium diagram

Fig. 3 : Eutectic transformation

Inoculation of cast Irons - an overview

Fig. 4 : Cooling Curve

Fig. 5 : Cooling Curve - Chill Formation

Time

DUCTILE INOCULATION

- **D** Optimum nodule shape
- □ Degree of nodularity
- $\hfill\square$ Improves nodule count
- $\hfill\square$ Prevention of formation of carbides
- $\hfill\square$ Increases ferrite content.

Uninoculated Ductile Iron

OPTIMUM NODULE SHAPE

Nodular Graphite

Nodular Graphite Stereoscan × 950

Degree of Nodularity

95%

60%

80%

Improvement in Nodule Count

Prevention of Formation of Carbides Carbide in Ductile Iron

Inverse Chill

Increases Ferrite Content

Nil Pearlite - Completely Ferritic 100x-Etched

GREY IRON INOCULATION

Promote formation of type A graphite Prevent formation of undercooled graphite Prevent formation of Rosette graphite

4% Picral × 100

Stereoscan × 600

Effect of low % Sulphur on ductile iron microstructure

- Material ferritic ductile iron.
- $Grade 420 N/mm^2$ minimum tensile strength, 12% minimum elongation.
- Problem low nodule count <100mm²' 5% carbide, shrinkage porosity.
- Cause <0.005% S in base metal treated with 6% Mg, 1% TRE FeSiMg, 1.6% addition at 1500°C.
- Inoculation 0.5% addition FeSi 4% All in pouring ladle.
- Remedy increased % S to 0.010-0.015% in furnace.
- Result increased nodule count >100mm², no carbide, no porosity.

Inoculation at Low Temperatures

Casting - continuously cast bar. - ductile iron ferritic and Material pearlitic. Problem - depth of chill on surface of the bar excessive. Inoculation – 0.6% FeSi, 4.5% Al at 1300°C into metal stream. Remedy - change inoculant to FeSi + 5% Ba + 9% Mn 0.2 × 0.7mm. Result - reduced chill depth on surface. greater consistency of nodule count and shape.

How to arrive at exact quantity of inoculant?

Ductile Irons – add minimum quantity to achieve:

- □ nodule count
- □ nodule shape
- \Box carbide free
- □ fully ferritic.

Grey Iron – wedge test to give minimum chill in casting, microstructure type A graphite, cooling curve analysis – computer software programmes.

Over inoculation – eutectic cell count, shrinkage defects (sinks/draws).

Factors Affecting Fade Times

Type of melting furnace – cupola or induction melting?

Charge composition – % steel, % pig iron.

Type of recarburiser – graphite or synthetic.

Pouring temperature from furnace. Holding time before inoculation. Trace element contents.

Inoculation of Austenitic Ni-Resist

For Chromium containing Ni-Resist (D2, D2-B, D3, D3-A, D4, D5B and D5-S) inoculation is more critical.

Inoculation aims to minimise the quantity of Cr carbide, distribute evenly carbides in a fine form and improve nodule shape.

AFS recommends 0.5% Si addition, a FeSi 75 in ladle, 0.2% FeSi 75 in the base of the downsprue.

UK foundry making thin sectioned D5S add 0.3% of FeSi 4% Al or FeSi 1.5% Zr 2% Ca plus 0.1% "in the mould" inoculant.

Undercooled Graphite

4% Picral × 100

Stereoscan x 100

Rosette Flake Graphite

4% Picral × 100

Stereoscan × 100

Fig. 6 : Cross section of wedge.

Magnesium Based Inoculant

There are no commercially available ladle or metal stream inoculants containing Mg. However, it is a necessary addition in the production of "in the mould" inoculant blocks utilising powder metallurgical techniques. Typically 0.7-1.7% addition.

Impact of Size and Shape on Inoculation

In the mould inoculation. Pressed and sintered block. Powder metallurgical techniques. Size, shape, weight - tailor to foundry needs. Cost saving. Ductile Iron 0.1% addition. Grey Iron 0.05% addition. Promtes uniforms structure in various sections. A disvantage-increases tendency to

unsoundness.

HOW DO WE INOCULATE IRONS?

ADDITION RATES FOR GREY & DUCTILE IRON

Ladle inoculation – up to 1.0%, typically 1-6mm.

In stream inoculation -0.05 to 0.2%, typically 0.2-0.7mm.

In the mould inoculation -0.05 to 0.12%. Electric melted irons - require up to 50%higher addition than cupola melted irons.

CHOICE OF INOCULANTS FOR GREY AND DUCTILE IRON

Introduction

Majority of inoculants are FeSi based. Si level 75% or 45% content. FeSi as a pure material has no inoculation effect. A combination of active elements e.g. Al, Ca, Ba, Mn, Zr, Sr, Bi when added to FeSi will inoculate. Ba, Zr, Sr, Bi are more

Fig. 7 : Schematic of inoculation methods.

Fig. 8 : Ladle inoculation.

Fig. 9 : In stream inoculation

Fig. 10 : In the mould inoculation.

Fig. 11 : In the mould inoculation.

55th Indian Foundry Congress 2007

Pressed and Sintered Inoculant Blocks.

powerful active elements than Al and Ca in FeSi based inoculants. This results in lower addition rates.

Active Elements

Aluminium

Typical 0.5-4.5%. Danger of pinholing in green sand grey iron production if Al>0.015%.

Calcium

Typical 0.5-2.0%. Ca + AI total of 2.5%. Known as inoculating grade FeSi. First commercially used FeSi inoculant, *Manganese*

Typical 3-10%. Used in combination with other elements, typically Ba, Zr. Forms lower melting point phases. Zirconium Typical 1.5-4.5%. Aids fade resistance in combination with other inoculants. Ties up N2 from melting process. Barium Typical 1.0-11.0%. Minimises chill formation in combination with other elements. Good fade resistance. Rare Earths Typical up to 10%. Combinations of Ce/La. Effective in low S content grey iron. Bismuth Typical up to 1.5%.

Combination with 0.5% RE.

Effective in thin section ductile iron.

Strontium

Typical 0.6-1.0%.

Combination with 0.1% Ca and 0.5% Al maximum.

Good chill reduction

Lower shrinkage tendencies.

Low S grey irons and ductile irons treated with high RE FSM reduce effectiveness.

CHOICE OF INOCULANTS - OUR ADVICE

- Grey iron ladle -1 % Sr or 2% Ba.
- Grey iron ladle -1 % Sr or 4% Zr/4% Mn.

Ductile iron-ladle -1% Bi/0.5% RE for thin section.

Ductile iron-ladle - 2% Ba or 2% Zr for thicker section.

Ductile iron-late - 4% Al or 4% Zr/4% Mn.

Fade times -8 to 10 minutes.

CASE STUDIES

"In the Mould" Inoculation

Casting – steering knuckle - 7kgs.

- Material ductile Iron grade 400/15 impact properties of minimum 60J at minus 30°C unnotched bar.
- Problem failure to meet impact values.
- Cause 5% pearlite in test piece microstructures. Microshrinkage in test piece.
- Inoculation -0.6% addition of 1.5% Al, 1% Ca FeSi in pouring ladle.

Remedy

- □ 0.3% addition of ladle inoculant FeSi + 1.5% Al + 1%Ca.
- 0.1% in the mould block 70% Si, 4%
 Al, 1% Ca Result typically 80-100J at minus 30°C impact values.

Effect of High Mg Treatment on Inoculation

Casting - Automotive Manifold.

- Material grade 450N/mm² minimum tensile strength, 10% minimum elongation.
- Problem changed from a cored wire containing 70% Mg, 30% FeSi to 98% Mg wire resulting in carbide problems.
- Inoculation -0.1% in the mould inoculant FeSi 4.5% Al.

Remedy

- □ 0.25% FeSi 4.5% Al into autopour furnace.
- $\hfill\square$ 0.15% FeSi 4.5% into metal stream.
- \Box 0.1% in the mould inoculant.

Result - elimination of carbide.

"Pre-Conditioning"

Material – ductile iron - ferritic Grade-420/12.

Problem – the last metal taken from a 2MT induction furnace exhibited:

- \Box poor nodularity <85%.
- \Box poor nodule count <100/mm².
- \Box 10% pearlite.

Remedy – pre-conditioning addition of 0.1% of a 75% FeSi/25% graphite mixture every 20 minutes to the furnace.

Result – 85% minimum nodularity, 150	Problem – microshrinkage.
nodules/mm ² , fully ferritic structure.	Inoculation – 75% Si, 1% Al, 4% Mn "in the mould" block 0.05% addition.
Effect of Strontium on Shrinkage Characteristics of Grey Iron	Remedy – in the mould block containing 75% Si 0.6% Sr 0.05% addition.
Casting – brake drum.	
Material – grey iron grade 220.	Result – elimination of microshrinkage.

Kish Graphite, Star-Shaped Clusters 4% Picral X300

Stereoscan X450

Exploded Graphite Nodules Unetched X300

Exploded Graphite Nodules Stereoscan X320

Inoculated- 20 mins later

Underinoculated ductile iron 100 etched

Spiky Graphite, Etched in 4% Picral X100

Spiky Graphite, Stereoscan X530

Chunky Graphite, Etched in 4% Picral X100